Sets
Type signatures are provisional and may contain errors.
Data jetted sets of nouns. Sets are represented as a law where the row has no duplicate elements and all elements are stored in ascending order, with the form:
(0 1 2 row)Set Functions
isSet
(isSet x)
> x : a
> BoolChecks if a value is a valid set.
isSet %[]           == 1
isSet %[1 2 3]      == 1
isSet (0 1 2 [])    == 1
isSet (0 2 2 [])    == 0  ; Invalid set representation
isSet [1 2 3]       == 0  ; Not a set, just a rowemptySet
(emptySet)
> Set aReturns an empty set.
emptySet    == %[]
emptySet    == setFromRow []
emptySet    == setDel 1 %[1]setIsEmpty
(setIsEmpty xs)
> xs : Set a
> BoolChecks if a set is empty.
setIsEmpty emptySet    == 1
setIsEmpty %[1]        == 0
setIsEmpty %[1 2 3]    == 0setSing
(setSing e)
> e : a
> Set aCreates a singleton set containing one element.
setSing 3      == %[3]
setSing {a}    == %[a]
setSing 0      == %[0]setFromRow
(setFromRow xs)
> xs : Row a
> Set aCreates a set from a row, removing duplicates and sorting.
setFromRow [3 1 2 1]        == %[1 2 3]
setFromRow [{a} {b} {a}]    == %[a b]
setFromRow [5 4 3 2 1]      == %[1 2 3 4 5]setFromRowAsc
(setFromRowAsc xs)
> xs : Row a
> Set aCreates a set from a row that is already in ascending order with no duplicates.
setFromRowAsc [1 2 3]          == %[1 2 3]
setFromRowAsc [{a} {b} {c}]    == %[a b c]
setFromRowAsc [0]              == %[0]setToRow
(setToRow xs)
> xs : Set a
> Row aConverts a set to a row.
setToRow %[1 2 3]    == [1 2 3]
setToRow %[a b c]    == [a b c]
setToRow %[]         == []setLen
(setLen xs)
> xs : Set a
> NatReturns the number of elements in a set.
setLen %[]         == 0
setLen %[1 2 3]    == 3
setLen %[a]        == 1setToList
(setToList xs)
> xs : Set a
> List aConverts a set to a list.
setToList %[1 2 3]    == [1 [2 [3 0]]]
setToList %[a b]      == [%a [%b 0]]
setToList %[]         == 0  ; NILsetFoldl
(setFoldl f z xs)
> f  : (b > a > b)
> z  : b
> xs : Set a
> bLeft-associative fold over a set.
setFoldl add 0 %[1 2 3]              == 6
setFoldl mul 1 %[1 2 3 4]            == 24
setFoldl (flip CONS) NIL %[1 2 3]    == [3 [2 [1 0]]]setFoldr
(setFoldr f z xs)
> f  : (a > b > b)
> z  : b
> xs : Set a
> bRight-associative fold over a set.
setFoldr (flip CONS) NIL %[1 2 3]     == [[[0 3] 2] 1]
setFoldr sub 0 %[1 2 3]               == 1
setFoldr strWeld {} %[{a} {b} {c}]    == %abcsetIns
(setIns e xs)
> e  : a
> xs : Set a
> Set aInserts an element into a set.
setIns 3 %[1 2]      == %[1 2 3]
setIns 2 %[1 2]      == %[1 2]  ; No change if element already exists
setIns {a} %[b c]    == %[a b c]setDel
(setDel e xs)
> e  : a
> xs : Set a
> Set aRemoves an element from a set.
setDel 2 %[1 2 3]      == %[1 3]
setDel 4 %[1 2 3]      == %[1 2 3]  ; No change if element doesn't exist
setDel {b} %[a b c]    == %[a c]setHas
(setHas e xs)
> e  : a
> xs : Set a
> BoolChecks if an element is in a set.
setHas 2 %[1 2 3]      == 1
setHas 4 %[1 2 3]      == 0
setHas {b} %[a b c]    == 1setWeld
(setWeld xs ys)
> xs : Set a
> ys : Set a
> Set aCombines two sets.
setWeld %[1 2] %[2 3]    == %[1 2 3]
setWeld %[a b] %[c d]    == %[a b c d]
setWeld %[] %[1 2 3]     == %[1 2 3]setUnion
(setUnion xs ys)
> xs : Set a
> ys : Set a
> Set aAlias for setWeld. Combines two sets.
setUnion %[1 2] %[2 3]    == %[1 2 3]
setUnion %[a b] %[c d]    == %[a b c d]
setUnion %[] %[1 2 3]     == %[1 2 3]setCatRow
(setCatRow xs)
> xs : Row (Set a)
> Set aCombines a row of sets into a single set.
setCatRow [%[1 2] %[2 3] %[3 4]]    == %[1 2 3 4]
setCatRow [%[a b] %[c] %[d e]]      == %[a b c d e]
setCatRow [%[] %[1] %[]]            == %[1]setCatList
(setCatList xs)
> xs : List (Set a)
> Set aCombines a list of sets into a single set.
setCatList [%[1 2] [%[3 4] [%[2 3] 0]]]    == %[1 2 3 4]
setCatList [%[a b] [%[c] [%[d e] 0]]]      == %[a b c d e]
setCatList [%[] [%[1] [%[] 0]]]            == %[1]setCatRowAsc
(setCatRowAsc x)
> xs : Row (Set a)
> Set aCombines a row of sets that are already in ascending order.
setCatRowAsc [%[1 2] %[3 4] %[5 6]]    == %[1 2 3 4 5 6]
setCatRowAsc [%[a b] %[c d] %[e f]]    == %[a b c d e f]
setCatRowAsc [%[] %[1] %[2 3]]         == %[1 2 3]setMin
(setMin xs)
> xs : Set a
> aReturns the minimum element in a set.
setMin %[1 2 3]    == 1
setMin %[c b a]    == a
setMin %[5]        == 5setMax
(setMax xs)
> xs : Set a
> aReturns the maximum element in a set.
setMax %[1 2 3]    == 3
setMax %[c b a]    == c
setMax %[5]        == 5setPop
(setPop xs)
> xs : Set a
> (a, Set a)Removes and returns the minimum element from a set.
setPop %[1 2 3 4]    == [1 %[2 3 4]]
setPop %[a b c]    == [%a %[b c]]
setPop %[5]        == [5 %[]]setDrop
(setDrop n xs)
> n  : Nat
> xs : Set a
> Set aRemoves the first n elements from a set.
setDrop 2 %[1 2 3 4]    == %[3 4]
setDrop 1 %[a b c]      == %[b c]
setDrop 0 %[1 2 3]      == %[1 2 3]setTake
(setTake n xs)
> n  : Nat
> xs : Set a
> Set aKeeps the first n elements of a set.
setTake 2 %[1 2 3 4]    == %[1 2]
setTake 3 %[a b c d]    == %[a b c]
setTake 0 %[1 2 3]      == %[]setSplitAt
(setSplitAt i xs)
> i  : Nat
> xs : Set a
> (Set a, Set a)Splits a set at a given index.
setSplitAt 2 %[1 2 3 4]    == [%[1 2] %[3 4]]
setSplitAt 1 %[a b c]      == [%[a] %[b c]]
setSplitAt 0 %[1 2 3]      == [%[] %[1 2 3]]setSplitLT
(setSplitLT n xs)
> n  : a
> xs : Set a
> (Set a, Set a)Splits a set into elements less than a given value and the rest.
setSplitLT 3 %[1 2 3 4 5]      == [%[1 2] %[3 4 5]]
setSplitLT {c} %[a b c d e]    == [%[a b] %[c d e]]
setSplitLT 0 %[1 2 3]          == [%[] %[1 2 3]]setIntersect
(setIntersect xs ys)
> xs : Set a
> ys : Set a
> Set aReturns the intersection of two sets.
setIntersect %[1 2 3] %[2 3 4]    == %[2 3]
setIntersect %[a b c] %[b c d]    == %[b c]
setIntersect %[1 2 3] %[4 5 6]    == %[]setSub
(setSub xs ys)
> xs : Set a
> ys : Set a
> Set aSubtracts one set from another.
setSub %[1 2 3] %[2 3]      == %[1]
setSub %[a b c d] %[b d]    == %[a c]
setSub %[1 2 3] %[4 5 6]    == %[1 2 3]setElem
(setElem n xs)
> n  : Nat
> xs : Set a
> aReturns the nth element of a set.
setElem 1 %[1 2 3]    == 2
setElem 0 %[a b c]    == %a
setElem 2 %[x y z]    == %zsetDifference
Alias for setSub.
setInsert
Alias for setIns.
setSubtract
Alias for setSub.
setIntersection
Alias for setIntersect.
Last updated