Sets

Type signatures are provisional and may contain errors.

Data jetted sets of nouns. Sets are represented as a law where the row has no duplicate elements and all elements are stored in ascending order, with the form:

(0 1 2 row)

Set Functions

isSet

(isSet x)
> x : a
> Bool

Checks if a value is a valid set.

isSet %[]           == 1
isSet %[1 2 3]      == 1
isSet (0 1 2 [])    == 1
isSet (0 2 2 [])    == 0  ; Invalid set representation
isSet [1 2 3]       == 0  ; Not a set, just a row

emptySet

(emptySet)
> Set a

Returns an empty set.

emptySet    == %[]
emptySet    == setFromRow []
emptySet    == setDel 1 %[1]

setIsEmpty

(setIsEmpty xs)
> xs : Set a
> Bool

Checks if a set is empty.

setIsEmpty emptySet    == 1
setIsEmpty %[1]        == 0
setIsEmpty %[1 2 3]    == 0

setSing

(setSing e)
> e : a
> Set a

Creates a singleton set containing one element.

setSing 3      == %[3]
setSing {a}    == %[a]
setSing 0      == %[0]

setFromRow

(setFromRow xs)
> xs : Row a
> Set a

Creates a set from a row, removing duplicates and sorting.

setFromRow [3 1 2 1]        == %[1 2 3]
setFromRow [{a} {b} {a}]    == %[a b]
setFromRow [5 4 3 2 1]      == %[1 2 3 4 5]

setFromRowAsc

(setFromRowAsc xs)
> xs : Row a
> Set a

Creates a set from a row that is already in ascending order with no duplicates.

setFromRowAsc [1 2 3]          == %[1 2 3]
setFromRowAsc [{a} {b} {c}]    == %[a b c]
setFromRowAsc [0]              == %[0]

setToRow

(setToRow xs)
> xs : Set a
> Row a

Converts a set to a row.

setToRow %[1 2 3]    == [1 2 3]
setToRow %[a b c]    == [a b c]
setToRow %[]         == []

setLen

(setLen xs)
> xs : Set a
> Nat

Returns the number of elements in a set.

setLen %[]         == 0
setLen %[1 2 3]    == 3
setLen %[a]        == 1

setToList

(setToList xs)
> xs : Set a
> List a

Converts a set to a list.

setToList %[1 2 3]    == [1 [2 [3 0]]]
setToList %[a b]      == [%a [%b 0]]
setToList %[]         == 0  ; NIL

setFoldl

(setFoldl f z xs)
> f  : (b > a > b)
> z  : b
> xs : Set a
> b

Left-associative fold over a set.

setFoldl add 0 %[1 2 3]              == 6
setFoldl mul 1 %[1 2 3 4]            == 24
setFoldl (flip CONS) NIL %[1 2 3]    == [3 [2 [1 0]]]

setFoldr

(setFoldr f z xs)
> f  : (a > b > b)
> z  : b
> xs : Set a
> b

Right-associative fold over a set.

setFoldr (flip CONS) NIL %[1 2 3]     == [[[0 3] 2] 1]
setFoldr sub 0 %[1 2 3]               == 1
setFoldr strWeld {} %[{a} {b} {c}]    == %abc

setIns

(setIns e xs)
> e  : a
> xs : Set a
> Set a

Inserts an element into a set.

setIns 3 %[1 2]      == %[1 2 3]
setIns 2 %[1 2]      == %[1 2]  ; No change if element already exists
setIns {a} %[b c]    == %[a b c]

setDel

(setDel e xs)
> e  : a
> xs : Set a
> Set a

Removes an element from a set.

setDel 2 %[1 2 3]      == %[1 3]
setDel 4 %[1 2 3]      == %[1 2 3]  ; No change if element doesn't exist
setDel {b} %[a b c]    == %[a c]

setHas

(setHas e xs)
> e  : a
> xs : Set a
> Bool

Checks if an element is in a set.

setHas 2 %[1 2 3]      == 1
setHas 4 %[1 2 3]      == 0
setHas {b} %[a b c]    == 1

setWeld

(setWeld xs ys)
> xs : Set a
> ys : Set a
> Set a

Combines two sets.

setWeld %[1 2] %[2 3]    == %[1 2 3]
setWeld %[a b] %[c d]    == %[a b c d]
setWeld %[] %[1 2 3]     == %[1 2 3]

setUnion

(setUnion xs ys)
> xs : Set a
> ys : Set a
> Set a

Alias for setWeld. Combines two sets.

setUnion %[1 2] %[2 3]    == %[1 2 3]
setUnion %[a b] %[c d]    == %[a b c d]
setUnion %[] %[1 2 3]     == %[1 2 3]

setCatRow

(setCatRow xs)
> xs : Row (Set a)
> Set a

Combines a row of sets into a single set.

setCatRow [%[1 2] %[2 3] %[3 4]]    == %[1 2 3 4]
setCatRow [%[a b] %[c] %[d e]]      == %[a b c d e]
setCatRow [%[] %[1] %[]]            == %[1]

setCatList

(setCatList xs)
> xs : List (Set a)
> Set a

Combines a list of sets into a single set.

setCatList [%[1 2] [%[3 4] [%[2 3] 0]]]    == %[1 2 3 4]
setCatList [%[a b] [%[c] [%[d e] 0]]]      == %[a b c d e]
setCatList [%[] [%[1] [%[] 0]]]            == %[1]

setCatRowAsc

(setCatRowAsc x)
> xs : Row (Set a)
> Set a

Combines a row of sets that are already in ascending order.

setCatRowAsc [%[1 2] %[3 4] %[5 6]]    == %[1 2 3 4 5 6]
setCatRowAsc [%[a b] %[c d] %[e f]]    == %[a b c d e f]
setCatRowAsc [%[] %[1] %[2 3]]         == %[1 2 3]

setMin

(setMin xs)
> xs : Set a
> a

Returns the minimum element in a set.

setMin %[1 2 3]    == 1
setMin %[c b a]    == a
setMin %[5]        == 5

setMax

(setMax xs)
> xs : Set a
> a

Returns the maximum element in a set.

setMax %[1 2 3]    == 3
setMax %[c b a]    == c
setMax %[5]        == 5

setPop

(setPop xs)
> xs : Set a
> (a, Set a)

Removes and returns the minimum element from a set.

setPop %[1 2 3 4]    == [1 %[2 3 4]]
setPop %[a b c]    == [%a %[b c]]
setPop %[5]        == [5 %[]]

setDrop

(setDrop n xs)
> n  : Nat
> xs : Set a
> Set a

Removes the first n elements from a set.

setDrop 2 %[1 2 3 4]    == %[3 4]
setDrop 1 %[a b c]      == %[b c]
setDrop 0 %[1 2 3]      == %[1 2 3]

setTake

(setTake n xs)
> n  : Nat
> xs : Set a
> Set a

Keeps the first n elements of a set.

setTake 2 %[1 2 3 4]    == %[1 2]
setTake 3 %[a b c d]    == %[a b c]
setTake 0 %[1 2 3]      == %[]

setSplitAt

(setSplitAt i xs)
> i  : Nat
> xs : Set a
> (Set a, Set a)

Splits a set at a given index.

setSplitAt 2 %[1 2 3 4]    == [%[1 2] %[3 4]]
setSplitAt 1 %[a b c]      == [%[a] %[b c]]
setSplitAt 0 %[1 2 3]      == [%[] %[1 2 3]]

setSplitLT

(setSplitLT n xs)
> n  : a
> xs : Set a
> (Set a, Set a)

Splits a set into elements less than a given value and the rest.

setSplitLT 3 %[1 2 3 4 5]      == [%[1 2] %[3 4 5]]
setSplitLT {c} %[a b c d e]    == [%[a b] %[c d e]]
setSplitLT 0 %[1 2 3]          == [%[] %[1 2 3]]

setIntersect

(setIntersect xs ys)
> xs : Set a
> ys : Set a
> Set a

Returns the intersection of two sets.

setIntersect %[1 2 3] %[2 3 4]    == %[2 3]
setIntersect %[a b c] %[b c d]    == %[b c]
setIntersect %[1 2 3] %[4 5 6]    == %[]

setSub

(setSub xs ys)
> xs : Set a
> ys : Set a
> Set a

Subtracts one set from another.

setSub %[1 2 3] %[2 3]      == %[1]
setSub %[a b c d] %[b d]    == %[a c]
setSub %[1 2 3] %[4 5 6]    == %[1 2 3]

setElem

(setElem n xs)
> n  : Nat
> xs : Set a
> a

Returns the nth element of a set.

setElem 1 %[1 2 3]    == 2
setElem 0 %[a b c]    == %a
setElem 2 %[x y z]    == %z

setDifference

Alias for setSub.

setInsert

Alias for setIns.

setSubtract

Alias for setSub.

setIntersection

Alias for setIntersect.

Last updated